Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Clin Med ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068429

RESUMO

BACKGROUND/AIMS: The Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) and Ankyloblepharon-ectodermal defect-cleft lip/palate (AEC) syndromes are rare autosomal dominant diseases caused by heterozygous mutations in the p63 gene. Patients are characterized by abnormalities of the skin, teeth, and hair and have limb defects, orofacial clefting and ectodermal dysplasia. In addition, they often show ocular surface alterations, leading to progressive corneal clouding and eventually blindness. Here, we present 8 cases describing patients affected by EEC (n = 6, with 5 sporadic and 1 familial cases) and AEC (n = 2, both sporadic cases) syndromes. We attempt to provide a description of the ocular disease progression over the years. METHODS: Clinical examinations and monitoring of ocular parameters for the assessment of limbal stem cell deficiency were constantly performed on patients between 2009 and 2023. Quantitative data and comparison with existing cases described in the literature are reported. RESULTS: The therapies supplied to patients were essential for the management of the symptoms, but unfortunately did not halt the progression of the pathology. CONCLUSIONS: A constant monitoring of the patients would help avoid the sudden worsening of symptoms. If the progression of the disease slows down, it would allow for the development of newer therapeutic strategies aimed at correcting the genetic defect.

2.
BMJ Open Ophthalmol ; 8(Suppl 2): A8-A9, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37604565

RESUMO

PURPOSE: The aim of this study was to establish and optimize a new and reproducible epithelial wound healing model on human corneas. This assay was used to study the kinetics of epithelial regeneration following a chemical injury. METHODS: Thirty (n=30) human corneas unsuitable for transplant were used for the experiments. Corneas were cultured in Storagix medium (FBOV) at 31°C. Epithelial integrity before the beginning of the experiments (pre-wound) was assessed using the vital dyes trypan blue (TB, TB-S 0.25%, AL.CHI.MI.A. srl) and sodium fluorescein (Fluo). 1-heptanol soaked paper disks (6 mm) were applied in the centre of the corneas for 1' to trigger a chemical damage at the epithelial layer. Afterwards, sodium fluorescein and TB stainings were repeated to quantify the damaged area and to monitor healing progression. The damaged area (mm2) was calculated for each time point with Fiji software. Wound healing rate (HR, mm2/die) was calculated for both Fluo (HRF) and TB (HRTB) measurements using the previously described formula:Arithmetical averages (HRFAVG and HRTBAVG) of HRs were calculated and correlated by Pearson correlation coefficient with the following donor's parameters: age, sex, post-mortem time (PMT, time between death and tissue procurement), stromal defects, septicaemia, body temperature, diabetes. RESULTS: The execution of the heptanol wounding is highly reproducible, as highlighted by Fluo and TB staining. The average time for full recovery from wounding was 3,8 ± 0,41 days for Fluo and 3,5 ± 0,63 days for TB. Fluo and TB stainings are interchangeable as they significantly correlate (Pearson correlation coefficient = 0.630; p>0.05). A negative linear correlation was observed between HR and PMT (HRFAVG: corrected R2: 0.243, p = 0.003; HRTBAVG: corrected R2: 0,132, p = 0.028), but not with the other donors' parameters. CONCLUSION: Our wound/healing model might be of great interest for studies of epithelial regeneration kinetics and validation of drugs for the treatment of ocular defects. The inverse correlation between PMT and HR provides valuable insights for scientists investigating the regenerative properties of the corneal epithelium, as well as for eye bank personnel aiming to preserve the regenerative potential of corneal epithelium.


Assuntos
Epitélio Corneano , Humanos , Fluoresceína , Doadores de Tecidos , Córnea , Heptanol , Regeneração
3.
BMJ Open Ophthalmol ; 8(Suppl 2): A7, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37604570

RESUMO

PURPOSE: The shortage of donor corneas represents a worldwide problem, and corneal endothelial cell (CEC) therapy might be a promising alternative approach. CEC can be implanted alone, which has shown limited efficacy, or with a scaffold that holds the cells together as a monolayer tissue, thus imitating Descemet membrane endothelial keratoplasty. We believe that endothelial cell density (ECD) >2000 cells/mm2, a cut-off value that eye banks use to provide quality tissues for transplantation to surgeons, should also be adopted as a parameter to define the quality of CECs as a new Advanced Therapy Medicinal Product for clinical applications in patients with endothelial dystrophies. METHODS: We isolated and cultured CECs from one or more corneas of elderly age donors with ECDs higher than or below 2000 cells/mm2. CEC cultures were carried out on coated plates and on hydrogels with a preformed basement membrane (from TissueGUARD, Germany). Immunofluorescence with antibodies against ZO-1 was performed to evaluate the ECDs of the CEC graft obtained. RESULTS: Our results suggest that primary cultures with ECDs>2000 cells/mm2 can be obtained on coated plated only when (1) CECs are isolated from one or more corneas of young donors; (2) CECs are isolated and pooled together from at least 2 elderly age donor corneas (if ECD>2000 cells/mm2) or 3 elderly age donor corneas (if ECD<2000 cells/mm2). Secondary cultures are all characterized by low ECDs. Hydrogels have been shown to be able to lead to increased ECDs after their release. CONCLUSION: Our protocol highlights the difficulties in obtaining cultures with ECDs>2000 cells/mm2. Despite being achievable with corneas from young donors, this becomes challenging when corneas from elderly donors are used, i.e., the overall majority of those collected by eye banks, particularly when corneas from elderly age donors with ECD<2000 cells/mm2 are considered as a source. One alternative would be to isolate CECs from more corneas, but this might raise the issue of antigenic stimulation, which could eventually lead to transplantation failure. Our strategy to overcome these challenges is the use of a preformed basement membrane as a scaffold for CECs. However, this challenging approach should be investigated more before proceeding to clinical application.


Assuntos
Caliciviridae , Células Epiteliais , Idoso , Humanos , Doadores de Tecidos , Córnea/cirurgia , Hidrogéis , Células Endoteliais
4.
PLoS One ; 18(2): e0281404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745611

RESUMO

Recent clinical studies suggest that retinal pigment epithelial (RPE) cell replacement therapy may preserve vision in retinal degenerative diseases. Scaffold-based methods are being tested in ongoing clinical trials for delivering pluripotent-derived RPE cells to the back of the eye. The aim of this study was to investigate human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells survival and behaviour on a decellularized Descemet's Membrane (DM), which may be of clinical relevance in retinal transplantation. DMs were isolated from human donor corneas and treated with thermolysin. The DM surface topology and the efficiency of the denudation method were evaluated by atomic force microscope, scanning electron microscopy and histology. hESC-RPE cells were seeded onto the endothelial-side surface of decellularized DM in order to determine the potential of the membrane to support hESC-RPE cell culture, alongside maintaining their viability. Integrity of the hESC-RPE monolayer was assessed by measuring transepithelial resistance. RPE-specific gene expression and growth factors secretion were assessed to confirm maturation and functionality of the cells over the new substrate. Thermolysin treatment did not affect the integrity of the tissue, thus ensuring a reliable method to standardize the preparation of decellularized DM. 24 hours post-seeding, hESC-RPE cell attachment and initial proliferation rate over the denuded DM were higher than hESC-RPE cells cultured on tissue culture inserts. On the new matrix, hESC-RPE cells succeeded in forming an intact monolayer with mature tight junctions. The resulting cell culture showed characteristic RPE cell morphology and proper protein localization. Gene expression analysis and VEGF secretion demonstrate DM provides supportive scaffolding and inductive properties to enhance hESC-RPE cells maturation. Decellularized DM was shown to be capable of sustaining hESC-RPE cells culture, thus confirming to be potentially a suitable candidate for retinal cell therapy.


Assuntos
Células-Tronco Embrionárias Humanas , Doenças Retinianas , Humanos , Diferenciação Celular/genética , Linhagem Celular , Lâmina Limitante Posterior , Células Epiteliais/metabolismo , Doenças Retinianas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Termolisina/metabolismo , Técnicas de Cultura de Células
5.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766837

RESUMO

Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is caused by heterozygous missense point mutations in the p63 gene, an important transcription factor during embryogenesis and for stem cell differentiation in stratified epithelia. Most of the cases are sporadic, related to de novo mutations arising during early-stage development. Familial cases show an autosomic dominant inheritance. The major cause of visual morbidity is limbal stem cell failure, which develops in the second to third decade of life. Patients often show ocular surface alterations, such as recurrent blepharitis and conjunctivitis, superficial microlesions of the cornea, and spontaneous corneal perforation and ulceration, leading to progressive corneal clouding and eventually visual loss. No definitive cures are currently available, and treatments to alleviate symptoms are only palliative. In this review, we will discuss the proposed therapeutic strategies that have been tested or are under development for the management of the ocular defects in patients affected by EEC syndrome: (i) gene therapy-based approaches by means of Allele-Specific (AS) siRNAs to correct the p63 mutations; (ii) cell therapy-based approaches to replenish the pool of limbal stem cells; and (iii) drug therapy to correct/bypass the genetic defect. However, as the number of patients with EEC syndrome is too limited, further studies are still necessary to prove the effectiveness (and safety) of these innovative therapeutic approaches to counteract the premature differentiation of limbal stem cells.


Assuntos
Fenda Labial , Fissura Palatina , Displasia Ectodérmica , Humanos , Fissura Palatina/genética , Fenda Labial/genética , Fenda Labial/terapia , Displasia Ectodérmica/genética , Displasia Ectodérmica/terapia , Displasia Ectodérmica/diagnóstico , Fatores de Transcrição/metabolismo
6.
BMJ Open Ophthalmol ; 7(1)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36161850

RESUMO

OBJECTIVE: Recent clinical studies have shown that the transplantation of functional retinal pigment epithelium (RPE) cells can prevent the onset of RPE degeneration in age-related macular degeneration. This study aimed to investigate the potential of human amniotic membrane (hAM) as a viable scaffold for the growth and proliferation of pluripotent-derived RPE cells. METHODS AND ANALYSIS: Three enzymatic hAM de-epithelialisation methods (thermolysin, trypsin-EDTA and dispase II) were assessed by histological analysis and optical coherence tomography (OCT). We generated RPE cells from a human embryonic stem cell (hESC) line subjected to spontaneous differentiation in feeder-free conditions. The hESC-derived RPE cells were seeded over denuded hAM at a density of 2.0×105 cells/cm2 and maintained in culture for up to 4 weeks. Immnofluorescence was carried out to evaluate the development of a confluent monolayer of RPE cells on the top of the hAM. Conditioned medium was collected to measure pigment epithelium-derived factor (PEDF) concentration by ELISA. RESULTS: Laminin α5 and collagen IV staining confirmed the efficiency of the de-epithelialisation process. In particular, thermolysin showed good retention of tissue integrity on OCT images and greater preservation of the hAM basement membrane. The hESC-derived RPE cells formed patches of pigmented cells interspersed along the denuded hAM, but failed to form a regular sheet of RPE cells. These cells expressed typical RPE markers, such as PMEL17 and RPE65, but they secreted low levels of PEDF. CONCLUSION: The biological variability of the hAM could influence the adhesion and the expansion of hESC-derived RPE cells. Further studies are required to verify whether a non-confluent monolayer might represent a limit to transplantation.


Assuntos
Células-Tronco Embrionárias Humanas , Âmnio , Colágeno/metabolismo , Meios de Cultivo Condicionados/metabolismo , Ácido Edético/metabolismo , Endopeptidases , Humanos , Epitélio Pigmentado da Retina , Termolisina/metabolismo , Tripsina/metabolismo
7.
J Cell Mol Med ; 26(14): 3977-3994, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35706382

RESUMO

Human epithelial stem cells (ESCs) are characterized by long-term regenerative properties, much dependent on the tissue of origin and varying during their lifespan. We analysed such variables in cultures of ESCs isolated from the skin, conjunctiva, limbus and oral mucosa of healthy donors and patients affected by ectrodactyly-ectodermal dysplasia-clefting syndrome, a rare genetic disorder caused by mutations in the p63 gene. We cultured cells until exhaustion in the presence or in the absence of DAPT (γ-secretase inhibitor; N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine T-butyl ester). All cells were able to differentiate in vitro but exhibited variable self-renewal potential. In particular, cells carrying p63 mutations stopped prematurely, compared with controls. Importantly, administration of DAPT significantly extended the replicative properties of all stem cells under examination. RNA sequencing analysis revealed that distinct sets of genes were up- or down-regulated during their lifetime, thus allowing to identify druggable gene networks and off-the-shelf compounds potentially dealing with epithelial stem cell senescence. These data will expand our knowledge on the genetic bases of senescence and potentially pave the way to the pharmacological modulation of ageing in epithelial stem cells.


Assuntos
Fenda Labial , Fissura Palatina , Displasia Ectodérmica , Fenda Labial/diagnóstico , Fissura Palatina/diagnóstico , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Inibidores da Agregação Plaquetária , Células-Tronco
8.
BMJ Open Ophthalmol ; 7(Suppl 2): A9, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-37282676

RESUMO

INTRODUCTION: Recent clinical studies suggest that RPE-cell replacement therapy may preserve vision and restore retinal structure in retinal degenerative diseases. New developments enabled the differentiation of RPE cells from pluripotent stem cells. Scaffold-based methods are being tested in ongoing clinical trials for delivering these cells to the back of the eye. Borrowed materials from donor tissues can be used as cell supports in subretinal transplantation. These biological matrices resemble the extracellular matrix microenvironment of the native tissue. The Descemet's membrane (DM) is an example of high collagen-rich basement membrane (BM). The potential of this tissue in retinal repair remains to be uncovered. AIMS: To investigate human embryonic stem cell-retinal pigment epithelium (hESC-RPE) cells survival and behaviour on a decellularized DM, which may be of clinical relevance in retinal transplantation. MATERIALS: DMs were isolated from human donor corneas and treated with thermolysin. The DM surface topology and the efficiency of the denudation method were evaluated by atomic force microscope and histology. hESC-RPE cells were seeded onto the endothelial-side surface of acellular DM in order to determine the potential of the membrane to support hESC-RPE cell culture, alongside maintaining their viability. Integrity of the hESC-RPE monolayer was assessed by measuring transepithelial resistance. RPE-specific gene, protein expression and growth factors secretion were assessed to confirm maturation and functionality of the cells over the new substrate. RESULTS: Thermolysin treatment did not affect the integrity of the tissue, thus ensuring a reliable method to standardize the preparation of decellularized DM. hESC-RPE cell attachment 6 days post-seeding and proliferation rates over the acellular DM were similar to hESC-RPE cells cultured on tissue culture inserts.On the new matrix, hESC-RPE cells succeeded in forming an intact monolayer with mature tight junctions. The resulting cell graft showed the characteristic RPE morphology. The expression of typical RPE genes, proper protein localization and key growth factor secretion further confirmed the correct RPE phenotype. The viability of the cells was maintained for up to 4 weeks in culture. CONCLUSION: Acellular DM was shown to be capable of sustaining hESC-RPE cells growth, thus confirming to be potentially a valid alternative to the Bruch's membrane.Further in vivo studies will need to verify if this product can represent a feasible tool to deliver RPE cells in the back of the eye.Our study highlights the possibility of recycling unsuitable corneal tissues, which would otherwise be discarded by the eye banks for clinical application.


Assuntos
Células-Tronco Embrionárias Humanas , Doenças Retinianas , Humanos , Lâmina Limitante Posterior , Termolisina/metabolismo , Doenças Retinianas/metabolismo , Células Epiteliais , Pigmentos da Retina/metabolismo
9.
BMJ Open Ophthalmol ; 7(Suppl 2): A9-A10, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-37282694

RESUMO

BACKGROUND: Transplantation of ex vivo cultured conjunctival cell layers, generated on amniotic membrane or other scaffolds, provides a viable option in treating heterogeneous ocular surface conditions. By comparison, cell therapy is costly, labour-intensive and subject to good manufacturing practice requirements and regulatory approval; no conjunctival cell-based therapy is currently available. Several techniques are available after primary pterygium excision to recover the ocular surface anatomy by restoring healthy conjunctival epithelium and preventing recurrence and complications. However, application of conjunctival free autograft or transpositional flap to cover the bared scleral area is limited when the conjunctiva are to be spared for future glaucoma filtering surgery, in patients with large or double-headed pterygia, in recurrent pterygia, or when the harvesting of donor conjunctival is precluded by scarring. AIM: To develop a simple technique to obtain expansion of the conjunctival epithelium when applied in vivo in diseased eyes. METHODS: We evaluated in vitro the best way of gluing conjunctival fragments over the AM, the efficiency of the fragments to generate conjunctival cell outgrowths, the molecular marker expression, and the feasibility of shipping preloaded AM.We performed simple conjunctival epithelial transplantation (SCET) in which we glued an amniotic membrane patch pre-loaded with autologous conjunctival tissue fragments over the scleral defect after pterygium excision and evaluated the recovery of the normal conjunctival epithelium and the disease recurrence up to 12 months after surgery. RESULTS: 65-80% of fragments generated outgrowth 48-72h after gluing, without differences between type of AM preparation and fragment size. Within 6-13 days, a full epithelium covered the surface of the amniotic membrane. Specific marker expression (Muc1, K19, K13, p63, ZO-1) was detected. The shipping test showed after 24h the 31% of the fragments glued over the AM epithelial side, compared to more than 90% of fragments stayed attached in the remaining conditions (stromal side, stromal without spongy layer, epithelial side without epithelium).Surgical excision and SCET for nasal primary pterygium were performed in 6 eyes/patients. No graft detachment and recurrence occurred within 12 months. In vivo confocal microscopy showed progressive expansion of the conjunctival cell population and formation of a clear cornea-conjunctiva transition. CONCLUSIONS: We established the most suitable conditions for a novel strategy based on in vivo expansion of conjunctival cells from conjunctival fragments glued over the AM. The application of SCET seems to be effective and replicable for the renewal of conjunctiva in patients requiring ocular surface reconstruction.


Assuntos
Pterígio , Humanos , Pterígio/cirurgia , Âmnio/transplante , Túnica Conjuntiva/cirurgia , Epitélio
10.
Br J Ophthalmol ; 106(3): 440-444, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34108226

RESUMO

BACKGROUND/AIMS: To set up the in vitro conditions for renewal of the conjunctival epithelium using healthy fragments of conjunctival tissue glued over an amniotic membrane. METHODS: We evaluated the capability of conjunctival tissue fragments to generate conjunctival cell outgrowth after seeding them onto amniotic membrane and culture plates; we then assessed conjunctival molecular marker expression by immunofluorescence. We also evaluated the efficiency of glueing the fragments over the amniotic membrane to determine the best setting and the feasibility of shipping preloaded amniotic membranes. RESULTS: Epithelial outgrowth was detected in 65%-80% of conjunctival fragments starting 48-72 hours after glueing, without major differences between type of membrane preparation and fragment size. Within 6-13 days, a full epithelium covered the surface of the amniotic membrane. Specific marker expression (conjunctival epithelium, Muc1, K19, K13; stemness, p63; tight junctions, ZO-1) was detected. Results of the shipping test showed that only 31% of the fragments were still glued over the epithelial side of the membrane within 24 hours compared to more than 90% of fragments stayed attached in the remaining conditions. CONCLUSION: The in vitro regeneration of conjunctival epithelium following outgrowth from conjunctival tissue fragments glued over an amniotic membrane may offer a viable strategy to renew the epithelium in vivo once applied over the ocular surface at the recipient site.


Assuntos
Âmnio , Túnica Conjuntiva , Âmnio/transplante , Células Epiteliais , Epitélio , Humanos
11.
Exp Eye Res ; 211: 108748, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461137

RESUMO

Currently, endothelial keratoplasty is the gold standard for the surgical treatment of Fuchs endothelial corneal dystrophy (FECD). Despite the remarkable success in terms of surgical outcomes, a shortage of corneal donor tissue poses a limitation to performing endothelial keratoplasty in many parts of the world. Cell therapy is a potential alternative strategy to keratoplasty and is currently under investigation. Considering that corneas with FECD may contain relatively healthy endothelial cells, samples obtained by descemetorhexis of eyes undergoing EK for FECD can be used for ex vivo expansion of endothelial cells as an autologous cell culture. In this study, we established corneal endothelial cell cultures derived from 40 patients that underwent endothelial keratoplasty for advanced FECD. Several parameters were evaluated including patient characteristics such as age, gender, and endothelial cell density as well as various processing and cell culture protocols based on different combinations of shipping temperatures, stabilization periods and treatment methods for corneal endothelial cell dissociation. FECD cultures were classified into three groups as: (i) no cells, (ii) cell cultures with endothelial-like morphology or (iii) cell cultures with fibroblast-like features. Our data seem to suggest that some factors can influence FECD cell culture characteristics including young age, high paracentral endothelial cell density, low shipping temperature and short stabilization period prior to cell isolation. Treatment with type 1 collagenase for cell isolation can delay endothelial-to-mesenchymal transition, but does not increase proliferative capacity. Although heterologous corneal endothelial cultures from healthy donors have shown encouraging outcomes, the feasibility of autologous cell therapy as a potential treatment for FECD remains challenging. Low initial cell concentration as well as endothelial to mesenchymal transition are the main obstacles to the application of FECD cultures in the clinical setting.


Assuntos
Lâmina Limitante Posterior/cirurgia , Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior , Endotélio Corneano/citologia , Distrofia Endotelial de Fuchs/cirurgia , Idoso , Biomarcadores/metabolismo , Contagem de Células , Técnicas de Cultura de Células , Separação Celular , Endotélio Corneano/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Cell Tissue Bank ; 22(1): 145-159, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33051810

RESUMO

The aim of this study is to set up a standardized and reproducible method to determine the potency (= stem cell content) of human conjunctival cell cultures by means of immunofluorescence-based analyses. This will help the development of new Advanced Therapy Medicinal Products (ATMPs) to use in future cell therapy clinical studies when fewer cells are available to perform the quality controls. To achieve this purpose, a reference standard was investigated and the expression levels of ΔNp63α (considered as a marker of conjunctival stem cells) was correlated to cell size. The limbal hTERT cells were used as reference standard to define the expression value of ΔNp63α. The mean intensity value of limbal hTERT cells ranging between 15 and 20 µm in diameter was used to distinguish between ΔNp63α bright and not bright cells. As ΔNp63α bright expression was mainly seen in the smaller cell size group (10-15 µm), we defined as conjunctival stem cells (= potency) those cells which were bright and with sizes between 10 and 15 µm. Assays on cells from clonal analyses were used to validate the method, as they do allow to observe a decrease in potency (Holoclones > Meroclones > Paraclones). The stem cell content of conjunctival grafts was found to be 11.3% ± 5.0 compared to 21.9% ± 0.6, 9.0% ± 8.1 and 0% from Holoclones, Meroclones and Paraclones, respectively. This new method, here named as Standardized Method for Potency Quantification, will allow to detect the potency in conjunctival cell cultures, thus obtaining a quality control assay responding to the GMP standards required for ATMP release.


Assuntos
Técnicas de Cultura de Células , Túnica Conjuntiva , Terapia Baseada em Transplante de Células e Tecidos , Células Epiteliais , Imunofluorescência , Humanos , Limbo da Córnea , Células-Tronco
13.
Biopreserv Biobank ; 19(1): 67-72, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33185460

RESUMO

Glycerol and dimethyl sulfoxide (DMSO) are widely used cryoprotectants for freezing human cell cultures. During the manufacturing process of ocular stem cell-based autographs, ex vivo cultivated ocular cells are cryopreserved for quality control purposes in accordance with regulatory requirements. The efficiency of the cryopreservation methods is limited by their effect on cell survival and quality. We compared two cryopreservation reagents, glycerol and DMSO, for their influence on the survival and quality of human primary conjunctival cultures. We found increased cell viability after cryopreservation in DMSO compared to cryopreservation in glycerol. The clonogenic and proliferative capacity was unaffected by the cryopreservation reagents, as shown by the colony forming efficiency and cumulative cell doubling. Importantly, the percentage of p63α- and keratin 19 (K19)-positive cells following cryopreservation in DMSO or glycerol was comparable. Taken together, our results demonstrate that cryopreservation in DMSO improves cell survival compared to cryopreservation in glycerol, with no subsequent effect on cell proliferative-, clonogenic-, or differentiation capacity. Therefore, we advise the use of a 10% DMSO-based cryopreservation medium for the cryopreservation of human primary conjunctival cells, as it will improve the number of cells available for the manufacturing of conjunctival stem cell-based autografts for clinical use.


Assuntos
Sobrevivência Celular , Células-Tronco , Criopreservação , Crioprotetores , Dimetil Sulfóxido , Humanos
14.
Hum Gene Ther ; 30(8): 923-945, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020856

RESUMO

Corneal diseases are among the most prevalent causes of blindness worldwide. The transparency and clarity of the cornea are guaranteed by a delicate physiological, anatomic, and functional balance. For this reason, all the disorders, including those of genetic origin, that compromise this state of harmony can lead to opacity and eventually vision loss. Many corneal disorders have a genetic etiology, and some are associated with rather rare and complex syndromes. Conventional treatments, such as corneal transplantation, are often ineffective, and to date, many of these disorders are still incurable. Gene therapy carries the promise of being a potential cure for many of these diseases, with solutions and strategies that did not seem possible until a few years ago. With its potential to treat genetic disease by means of deletion, replacement, or editing of a defective gene, the challenge can also be extended to corneal disorders in order to achieve long-term, if not definitive, relief. The aim of this paper is to review the state of the art of the different gene therapy approaches as potential treatments for corneal diseases and the future perspectives for the development of personalized gene-based medicine.


Assuntos
Córnea/metabolismo , Doenças da Córnea/etiologia , Doenças da Córnea/terapia , Terapia Genética , Animais , Terapia Combinada , Doenças da Córnea/diagnóstico , Doenças da Córnea/epidemiologia , Suscetibilidade a Doenças , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Incidência , Resultado do Tratamento
15.
Cornea ; 38(4): 469-479, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29923861

RESUMO

PURPOSE: To develop autologous tissue-engineered conjunctival epithelial sheets to be used as advanced therapy medicinal products for severe ocular surface disorders involving the conjunctiva. METHODS: Methods used aimed at 1) mapping the conjunctiva for identification of the stem cell location, 2) establishing proper cell culturing conditions, 3) identifying the proper scaffold, and 4) characterizing the conjunctival grafts better. For these purposes, immunostaining and PAS staining, serial cultivation of cells, and quantitative polymerase chain reaction ([INCREMENT]Np63α and MUC5AC) were performed. RESULTS: The inferior fornix represents the ideal area where to take the conjunctival biopsies from, with at least +3.58% of clonogenic colonies and higher percentages of stem cells compared with other areas, as confirmed by [INCREMENT]Np63α expression levels (6.79% ± 1.18%). The standard culture conditions are necessary when cells are cultured on bare plastic, while animal-free media can be used for conjunctival cell culture on the scaffold. Fibrin glue represents the ideal scaffold for production of epithelial conjunctival grafts because it allows physiological expression of the main conjunctival cell markers, with K19 as the ideal one (98.5% ± 0.5% positive cells). The presence of goblet cells (6.3% ± 1.3%) and expression of the stem cell marker [INCREMENT]Np63α (1.65% ± 0.35% positive cells) were also assessed. CONCLUSIONS: Our findings pave the way for ex vivo cultivation of conjunctival epithelial cells onto a scaffold using the cell suspension technique by means of animal-free media. This would allow us to obtain conjunctival grafts for clinical purposes, thus giving a therapeutic option to patients with conjunctival diseases refractory to current therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Túnica Conjuntiva/citologia , Células Epiteliais/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Células Cultivadas , Humanos , Imuno-Histoquímica , Tecidos Suporte
16.
Cell Reprogram ; 20(4): 215-224, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29989433

RESUMO

Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is a rare monogenic disease with autosomal dominant inheritance caused by mutations in the TP63 gene, leading to progressive corneal keratinocyte loss, limbal stem cell deficiency (LSCD), and eventually blindness. Currently, there is no treatment available to cure or slow down the keratinocyte loss. Human oral mucosal epithelial stem cells (hOMESCs), which are a mixed population of keratinocyte precursor stem cells, are used as source of autologous tissue for treatment of bilateral LSCD. However, hOMESCs from EEC patients have a reduced life span due to TP63 mutations and cannot be used for autologous transplantation. Human induced pluripotent stem cells (hiPSCs) represent a potentially unlimited source of autologous limbal stem cell for EEC patients and can be genetically modified by genome editing technologies to correct the disease ex vivo before transplantation. In this study, we describe for the first time the generation of integration-free EEC-hiPSCs from hOMESCs of EEC patients by Sendai virus vector and episomal vector-based reprogramming. The generated hiPSC clones expressed pluripotency markers and were successfully differentiated into derivatives of the three germ layers, as well as toward corneal epithelium. These cells may be used for EEC disease modeling and open perspectives for applications in cell therapy of LSCD.


Assuntos
Biomarcadores/análise , Diferenciação Celular , Fenda Labial/patologia , Fissura Palatina/patologia , Displasia Ectodérmica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mucosa Bucal/patologia , Células Cultivadas , Fenda Labial/genética , Fenda Labial/metabolismo , Fissura Palatina/genética , Fissura Palatina/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Bucal/metabolismo , Mutação , Fenótipo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
17.
Stem Cell Res ; 28: 177-180, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547871

RESUMO

Human oral mucosa epithelial stem cells (hOMESCs) were obtained from a fresh oral biopsy collected from a healthy subject at the Fondazione Banca degli Occhi del Veneto (FBOV). An integration-free reprogramming protocol was applied exploiting episomal plasmids transfected into cells using a Nucleofector device. Around day 20 post transfection, several human induced pluripotent stem cell (hiPSC) colonies were manually picked and expanded. One of these (UNIPDi001-A-hiPSCs) expressed undifferentiated state marker alkaline phosphatase along with a panel of pluripotency state markers and was able to differentiate into the derivatives of all the three germ layers.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mucosa Bucal/citologia , Células-Tronco/citologia , Transgenes , Biomarcadores/metabolismo , Linhagem Celular , Corpos Embrioides/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Plasmídeos/metabolismo , Células-Tronco/metabolismo
18.
Stem Cell Res ; 28: 141-144, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477592

RESUMO

Oral mucosa epithelial stem cells from a patient affected by Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome carrying the R279H mutation in the TP63 gene were reprogrammed into human induced pluripotent stem cells (hiPSCs) with episomal vectors. The generated UNIPDi003-A-hPSC line retained the mutation of the parental cells and showed a normal karyotype upon long term culture. Analysis of residual transgenes expression showed that the episomal vectors were eliminated from the cell line. UNIPDi003-A-hiPSCs expressed the undifferentiated state marker alkaline phosphatase along with a panel of pluripotency markers, and formed embryoid bodies capable of expressing markers belonging to all the three germ layers.


Assuntos
Fenda Labial/patologia , Fissura Palatina/patologia , Displasia Ectodérmica/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Mutação/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular , Reprogramação Celular , Corpos Embrioides/citologia , Feminino , Humanos , Cariotipagem , Camundongos , Análise de Sequência de DNA , Transgenes
19.
Stem Cell Res ; 28: 149-152, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29486400

RESUMO

Transgene free UNIPDi002-A-human induced pluripotent stem cell (hiPSC) line was generated by Sendai Virus Vectors reprogramming from human oral mucosal epithelial stem cells (hOMESCs) of a patient affected by ectrodactyly-ectodermal dysplasia-clefting (EEC)-syndrome, carrying a mutation in exon 8 of the TP63 gene (R304Q). The UNIPDi002-A-hiPSC line retained the mutation of the parental R304Q-hOMESCs and displayed a normal karyotype. No residual expression of transgenes nor Sendai virus vector sequences were detected in the line at passage 8. UNIPDi002-A-hiPSC expressed a panel of pluripotency-associated markers and could form embryoid bodies expressing markers belonging to the three germ layers ectoderm, endoderm and mesoderm.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Mucosa Bucal/patologia , Mutação/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transgenes , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Linhagem Celular , Reprogramação Celular , Análise Mutacional de DNA , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Feminino , Vetores Genéticos/metabolismo , Humanos , Camundongos , Vírus Sendai/genética
20.
Sci Rep ; 7(1): 5154, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698576

RESUMO

Current imaging techniques for the characterization of differentiated corneal limbal stem cells are destructive and cannot be used in eye bank for monitoring the regenerated epithelium in culture. We presented a minimally invasive, multimodal, marker-free imaging method for the investigation of epithelia regenerated with cultured human donor corneal limbal epithelial stem cells. Two-photon fluorescence and harmonic generation signals were collected from specimens in culture and used for evaluating the structure and morphology of epithelia cultured on two different bio-scaffolds; in addition, donor human corneal tissues were used as controls. The method provided reliable information on the organization of cellular and extracellular components of biomaterial substrates and was highly sensitive to determine differences between the density packing arrangement of epithelial cells of different biomaterials without relying on inferences from exogenous labels. The present minimally invasive standardized quality control methodology can be reliably translated to eye banks and used for monitoring harvested corneal limbal stem cells growth and differentiation in bioengineered materials.


Assuntos
Epitélio Corneano/citologia , Limbo da Córnea/citologia , Imagem Multimodal/métodos , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Microscopia de Fluorescência por Excitação Multifotônica , Regeneração , Doadores de Tecidos , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...